Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 221: 118727, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35797818

RESUMO

Hypersaline endorheic aquatic systems (H-SEAS) are lakes/shallow playas in arid and semiarid regions that undergo extreme oscillations in salinity and severe drought episodes. Although their geochemical uniqueness and microbiome have been deeply studied, very little is known about the availability and quality of dissolved organic matter (DOM) in the water column.. A H-SEAS from the Monegros Desert (Zaragoza, NE Spain) was studied during a hydrological wetting-drying-rewetting cycle. DOM analysis included: (i) a dissolved organic carbon (DOC) mass balance; (ii) spectroscopy (absorbance and fluorescence) and (iii) a molecular characterization with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The studied system stored a large amount of DOC and under the highest salinity conditions, salt-saturated waters (i.e., brines with salinity > 30%) accumulated a disproportionate quantity of DOC, indicating a significant in-situ net DOM production. Simultaneously, during the hydrological transition from wet to dry, the DOM pool showed strong alterations of it molecular composition. Spectroscopic methods indicated that aromatic and degraded DOM was rapidly replaced by fresher, relatively small, microbial-derived moieties with a large C/N ratio. FT-ICR-MS highlighted the accumulation of small, saturated and oxidized molecules (molecular O/C > 0.5), with a remarkable increase in the relative contribution of highly oxygenated (molecular O/C>0.9) compounds and a decrease of aliphatic and carboxyl-rich alicyclic moleculesThese results indicated that H-SEAS are extremely active in accumulating and processing DOM, with the notable release of organic solutes probably originated from decaying microplankton under large osmotic stress at extremely high salinities.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Hidrologia , Lagos/química , Espectrometria de Massas , Água
2.
Anal Chem ; 92(15): 10442-10449, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628457

RESUMO

A new method combining online nano solid phase extraction coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was developed to extract and analyze organic matter (OM) from microliter volumes of salt containing soil solution samples. This approach allows the reproducible analysis of only minute amounts of organic carbon (down to 10 ng C) without the need of further sample preparation. The new method was applied to unravel developing small-scale patterns of dissolved organic matter (DOM) in soil solutions of a soil column experiment in which Zea mays plants were grown for 3 weeks. Soil solution was sampled by micro suction cups from the undisturbed soil-root system once a week. Growth of the root system and, hence, position of individual roots relative to the suction cups was followed by X-ray computed tomography (X-ray CT). Our method makes it possible to resolve the chemical complexity of soil solution OM (up to 4300 molecular formulas from 2.5 µL sample). This allows to observe chemical gradients in the rhizosphere on a molecular level over time. The increasing influence of roots on soil solution OM is visible from higher molecular masses, an increasing degree of oxygenation and a higher fraction of formulas containing heteroatoms. The online nano solid phase extraction-FT-ICR-MS method provides novel insight into the processes affecting DOM in the rhizosphere, such as root exudation, microbial processes, and soil organic matter stabilization.


Assuntos
Ciclotrons , Análise de Fourier , Espectrometria de Massas/métodos , Rizosfera , Solo/química , Extração em Fase Sólida/métodos , Nanotecnologia , Raízes de Plantas , Zea mays
3.
Water Res ; 173: 115532, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32059128

RESUMO

Saline-alkaline lakes of the East African Rift are known to have an extremely high primary production supporting a potent carbon cycle. To date, a full description of carbon pools in these lakes is still missing. More specifically, there is not detailed information on the quality of dissolved organic matter (DOM), the main carbon energy source for heterotrophs prokaryotes. We report the first exhaustive description of DOM molecular properties in the water column of a meromictic saline-alkaline lake of the East African Rift. DOM availability, fate and origin were studied either quantitatively, in terms of dissolved organic carbon (DOC) and nitrogen (DON) or qualitatively, in terms of optical properties (absorbance) and molecular characterization of solid-phase extracted DOM (SPE-DOM) through negative electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). DOM availability was high (DOC ∼ 8.1 mM in surface waters) and meromixis imprinted a severe quantitative and qualitative change on DOM pool. At the surface, DOM was rich in aliphatic and moderately in aromatic molecules and thus mirroring autochthonous microbial production together with photodegradation. At the bottom changes were extreme: DOC increased up to 5 times (up to 50 mM) and, molecular signature drifted to saturated, reduced and non-aromatic DOM suggesting intense microbial activity within organic sediments. At the chemocline, DOC was retained indicating that this interface is a highly reactive layer in terms of DOM processing. These findings underline that saline-alkaline lakes of the East African Rift are carbon processing hot spots and their investigation may broaden our understanding of carbon cycling in inland waters at large.


Assuntos
Carbono , Lagos , Ciclo do Carbono , Espectrometria de Massas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...